Shell Tutorial

@version@ (@date@)

by Dieter Wimberger
Table of contents

Y oo | SRR 2
P = - S o USSP SRR 2
3 CONNECLION EVENLS.......oiiieiieitisieriieieee sttt st sb ettt e et e b nbe e 2
4 Implementing the Shell INtErface..........cooveii s 3
5 Configuring aNd RUNNING.........couiiiiiieireseeieee e se et enes 5
LRI 1 01T = 1 S 7

B.1 SEYIEA OULPUL. ...ttt sb e e e be et e sneenre e e e 8
7 ConnectionData and Shell SWItChING........cccviiiriiiice e 8

8 THE FUIl EXAMPIE.......ceeeie ettt r et e e e sneen e e e neeneas 9

http://forrest.apache.org/
http://forrest.apache.org/

Shell Tutorial

1. About

This document describes how to write a Shell implementation and points out important issues
with the implementation.

2. Basics

To be able to understand this tutorial, you should first try to get comfortable with the
following elements of the API:

net.wimpi.telnetd.shell.Shell

The interface that you will need to implement.
net.wimpi.telnetd.event.ConnectionListener

The Shell interface extends this interface to enforce the handling of connection
events. A separate section of this tutorial will describe event handling in more
detail.

net.wimpi.telnetd.io.BasicTerminallO

The base class for Terminal 1/0. A separate section of this tutorial will describe
more about terminal 1/O issues.

net.wimpi.telnetd.net.ConnectionData

A class which gives you access to connection specific references and
information. If your application becomes more sophisticated, you might probably
want to make use of this instance.

Throughout the terminal you will see that there are probably more classes/interfaces and
material that you should become familiar with.

Also make sure that you check out the rest of the deployment and configuration
documentation, to make sure you know how to configure and startup with your shell.

3. Connection Events

Asthisisavital point of the shell implementation, we will discussit first. By implementing
the shell interface you are automatically enforced to implement the ConnectionListener
interface. Thisis not very difficult, but requires some background to understand the behavior
at runtime.

There are following connection events:

CONNECTION_LOGOUTREQUEST

Occurs when a connection requested disgraceful logout by sending a <Ctrl>-<D>
key combination.

CONNECTION_BREAK

Page 2

http://forrest.apache.org/
http://forrest.apache.org/

Shell Tutorial

Occurs when the connection sent a NVT BREAK signal.

CONNECTION_IDLE

Occurs if a connection has been idle exceeding the configured time to warning.
CONNECTION_TIMEDOUT

Occurs if a connection has been idle exceeding the configured time to warning
and the configured time to timedout.

Each event hasiit's handling method, as defined by the interface, which will be called by the
ConnectionManager of the respective listener. Thisimplies, that the handling routine you
write should return control as fast as possible.

’ Y ou should carefully consider what strategy you use for event handling as the connection thread will be blocked when reading ‘
from the /0.

A possible strategy would be to flag or queue the event, interrupt the blocked connection
thread in a controlled fashion and make it handle events before reading from the 1/0 again.
Another possible strategy is athread pool for handling events.

Logically this depends on your application, as well as the event type.

4. mplementing the Shell Interface

Y ou have to start with defining a class that implements the interface:

public class SinpleShell
i mpl enents Shel |l {

In many cases you will want to have some reference to the 1/0 and the connection.

private Connection m Connecti on;
private BasicTernminall O mIGQ

An important part of the implementation is a factory method that will allow the shell
manager to create instances of your shell.

This method should be a static method of the class and is part of the Shell implementation contract not defined in the interface.
If it is not encountered when loading the shell class, an exception will be thrown.

public static Shell createShell () {
return new Si npl eShel | ();
}// creat eShel |

I1f you might want to recycle shell instances, you can do this independent of the ShellManager through this factory method.

Page 3

http://forrest.apache.org/
http://forrest.apache.org/

Shell Tutorial

The key method of the shell is the run(Connection con) method which will be called by the
connection to pass control to your application (i.e. shell implementation), once the
connection has been established.

public void run(Connection con) {
m_Connecti on = con;
mlO = n1Cbnnect|on get Term nal | () ;
/Tregister the connection |istener
m_Connect i on. addConnect i onLi st ener (t hi s);

/lyour shell routines

}
We will come back to this method later with some example.

Now what is missing is the ConnectionListener implementation mentioned beforehand. The
following code snippet provides a skeleton dummy implementation:

public voi d connectionTi nedQut (Connecti onEvent ce) {
m | O wite(" CONNECTI ON_TI MEDOUT") ;
m 1O flush();
/Tcl ose connection
m _Connecti on. cl ose();
}// connecti onTi nedCut

public void connectlonldle(CbnnectionEvent ce) {
m | O wite("CONNECTI ON_| DLE");
m | O flush();

}//connectlonldle

public void connecti onLogout Request (Connecti onEvent ce) {
m | O wite(" CONNECTI ON_LOGOUTREQUEST") ;
m | O flush();

}//connectlonLogout

public void connectlonSentBreak(CbnnectionEvent ce) {
m | O write(" CONNECTI ON_BREAK") ;
m | O flush();
}//connectlonSentBreak
So far so good. Now, to have a skeleton that is a simple running example, we will add some
shell output to the run method:
m | O eraseScreen(); [//erase the screen
110 honeChrsor() /Il place the cursor in hone position

m_
mlOowite(" SlaneSheII Thanks for connecting.\r\n"); //sone output
m1O. flush(); //flush the output to ensure it is sent

Now thisis not very exciting, but we have our first example (and Shell skeleton):

package your. package;

public class Sinpl eShel

Page 4

http://forrest.apache.org/
http://forrest.apache.org/

Shell Tutorial

i mpl ements Shell {

pr|vate Connecti on m Connecti on;
private BasicTernminal lO m|Q

public void run(Connection con) {
m _Connecti on = con;
m | O = m Connecti on. get Term nal | () ;
//register the connection |istener
m_Connect i on. addConnect i onLi st ener (t hi s);

m | O eraseScreen(); [//erase the screen
m | QO honeCUrsor() [/ place the cursor in home position
mlO wite("Dumy Shell. Thanks for connecting.\r\n"); //sonme out put
mIO flush(); //flush the output to ensure it is sent
}//run
public void connectionTi medQut (Connecti onEvent ce) {
m | O write("CONNECTI ON_TI MEDOUT") ;
m | O flush();
/I cl ose connection
m_Connect i on. cl ose();
}// connecti onTi medCut
public void connectlonldle(CbnnectlonEvent ce) {
ﬁ]lC)VWIte(CONNECTI ON_| DLE") ;
m | O flush();
}// conne ectionldle
public void connecti onLogout Request (Connecti onEvent ce) {
m | O wite("CONNECTI ON_LOGOUTREQUEST") ;
m |1 Q flush();
}// connecti onLogout

public void connectlonSentBreak(CbnnectlonEvent ce) {
m | O write("CONNECTI ON_BREAK") ;
m 1O flush();

}//conn nect i onSent Br eak

public static Shell createShell () {
return new Si npl eShel | ();
}// cr eat eShel

}//class Sinpl eShel

5. Configuring and Running

Now that we have a simple implementation, let's seeit in action. The following isa
combined propertiesfile that defines a sample listener which will run the SimpleShell we
have just created.

#Unified tel net proxy properties

Page 5

http://forrest.apache.org/
http://forrest.apache.org/

Shell Tutorial

#Daenon configurati on exanpl e.
#Created: ??/7??/2005 you

HERHHHH AT R
Tel net daenon properties
HERHHHHH T H T T H

HHHH RS RS RS R
Term nals Section
HHHBHEHHEHHHH RS RS R

List of term nals avail abl e and defi ned bel ow
t er mi nal s=vt 100, ansi , wi ndoof , xt er m

vt 100 i npl enentati on and al i ases
term vt 100. cl ass=net.wi npi .tel netd.io.term nal.vt100
term vt 100. al i ases=def aul t, vt 100- am vt 102, dec- vt 100

ansi inplementation and aliases _ _
term ansi.class=net.w npi.tel netd.io.term nal.ansi _
term ansi . al i ases=col or-xterm xterm col or, vt 320, vt 220, | i nux, scr een

wi ndoof inplenmentation and aliases
term wi ndoof . cl ass=net.w npi .tel netd.io.term nal . Wndoof
t erm wi ndoof . al i ases=

xterminplenentation and aliases _
term xterm cl ass=net.w npi.telnetd.io.terninal.xterm
term xterm al i ases=

HHIHHES RS RS R R
Shells Section
HHIH RS RS RS R R

List of shells avail able and defi ned bel ow
shel | s=si npl e

shel |l inplenentations
shel I . si npl e. cl ass=your. package. Si npl eShel

HHHBHESHEHHHHHH SRR
Listeners Section
HHHH RS RS RS RH R
| i steners=std

std |listener specific properties

#Basi ¢ |istener and connecti on managenent settings
st d. port =6666

std. fl oodprotection=5

st d. maxcon=25

Page 6

http://forrest.apache.org/
http://forrest.apache.org/

Shell Tutorial

i meout Settings for connections (ms)
.tine_to_warni ng=3600000
.t

T
std
std.tine_to_tinedout=60000

Housekeepi ng thread active every 1 secs
st d. housekeepi ngi nt er val =1000

st d. i nput nnde=char act er

Logi n shel
std. | ogi nshel | =si npl e

Connection filter class

std. connectionfilter=none

Now we assume that we saved the above in a properties file named test.properties. Y ou can
now startup the telnetd as follows (again we assume you have a JRE/JDK installed and the
javaVM binary in the PATH):

java -cl asspath telnetd.jar:comons-|ogging.jar:|og4j.jar

net.w npi.tel netd. Tel netD -D -Dl og4j . configurati on=<your URL for

| og4j . properties> <your URL for test.properties>

Using telnet to login, you should see something like the following:

[Fangorn: ~] wi npi $ tel net |ocal host 6666
Trying ::1...

Connected to | ocal host.

Escape character is '"]".

Then the screen will be erased, and you should end up with the following:

Si npl e Shell. Thanks for connecting.
Connection cl osed by foreign host.
[Fangorn: ~] wi npi $

6. Terminal I/0O

As mentioned in the overview (../deployment/) there are elementsin the library that can help
you with the I/0O. The most basic I/O is net.wimpi.telnetd.io.BasicTerminall O. Y ou can
directly use it to manipulate the terminal screen, you can wrap it into basic InputStream,
Reader, OutputStream or Writer implementations as well as design your own 1/0O classes on
top that help you most with your application.

Another option provided by the library is the toolkit implementation that has been started in
the net.wimpi.telnetd.io.toolkit package. Work on it is still in progress, and contributions
would be more than welcome. Some documentation/how-to will probably follow somewhen.
What you can do to check out it's functionality (respectively what it does), isto run the
net.wimpi.tel netd.shell.DummyShell implementation (in character mode!) and presst at the
prompt. Thiswill start you into asmall demo of the implemented elements.

Page 7

../deployment/
http://forrest.apache.org/
http://forrest.apache.org/

Shell Tutorial

Thereisatarget called runit that should startup a daemon with alistener that has the DummyShell set asit'slogin shell. In
most cases you can advance between active elements using ENTER, except for the full screen editor, where you will have to
use TAB.

Probably it is possible to adapt some of the code of projects you can find online (like jcurzez,
Java NI Courses, €tc.).

6.1. Styled Output

The implementation has support that helps you with creating styled output (bold, colors etc.).
If the terminal negotiated with a specific connection supports it, style escape codes specific
to the terminal will be sent.

The mechanism is rather ssmple, adding markups to strings that will be translated into escape
sequences the moment the string is written to the connection. The utility class
net.wimpi.telnetd.io.terminal.ColorHelper contains definitions, as well as helper methods
to add them properly to strings you passin (see API docs).

7. ConnectionData and Shell Switching

It is possible to obtain some basic information about a connection from the shell
implementation. Thisis done by obtaining an net.wimpi.tel netd.net. ConnectionData instance
from the acutal connection. The following code snippet is an example:

Connecti onData cd = m Connecti on. get Connecti onDat a() ;
mI|IO wite("Connected from " +
cd. get Host Nane() + "[" + cd.get Host Address() + ":"
+ cd.getPort() + "]" + BasicTerm nal |l O CRLF);
mIlOwite("CGuessed Locale: " +
cd. get Local e() + BasicTerm nal | O CRLF);
m |l O wite(BasicTerm nall O CRLF);

mIO wite("Negotiated Termi nal Type: " +
cd. get Negoti at edTer m nal Type() + Basi cTerni nal |l O CRLF);

mIOwite("Negotiated Colums: " + cd. get Termi nal Col ums() +
Basi cTerm nal | O CRLF) ;
mIOwite("Negotiated Rows: " + cd. get Ternm nal Rows() +

Basi cTerm nal | O. CRLF) ;

A shell might switch or alow to switch to another shell (the same environment will be
available to any shell, so you can pass parameters or references between shells without
problem).

Page 8

http://forrest.apache.org/
http://forrest.apache.org/

Shell Tutorial

Don't forget about the connection event listening. In most cases you might want to unregister the actual shell and register the
one you are switching to.

The following code snippet represents a simple example:

i f (m_Connecti on. set Next Shel | ("sinmpl e2")) {
m_Connect i on. renpveConnect i onlLi st ener (t hi s);
MmIOwite("Switching to Sinple2Shell" + BasicTermni nall O CRLF);
} else {
mIOwite("Could not set shell to switch to.");
}

8. The Full Example

The SimpleShell class with the use of the ConnectionData instance, as well as the
environment. Will switch to Simple2Shell (follows below):

package your. package;

i mport net.w npi.telnetd.io.BasicTerm nall G

i mport net.w npi.tel netd. net. Connecti on;

i mport net.w npi.tel netd. net. Connecti onDat a;

i mport net.w npi.tel netd. event. Connecti onEvent;

public class SinpleShell
i mpl ements Shell {

private Connection m Connecti on;
private BasicTermnal 1O mIQ

public void run(Connection con) {
m_Connecti on = con;
m | O = m Connecti on. get Term nal | () ;
//regi ster the connection |istener
m_Connect i on. addConnect i onLi st ener (t hi s);

m | O eraseScreen(); //erase the screen
m | O honeCursor(); //place the cursor in honme position

/] out put connection data
Connecti onData cd = m Connecti on. get Connecti onDat a() ;
mIO wite("Connected from " + cd.getHostNane() +
"[" + cd.getHost Address() + ":" + cd.getPort() + "]"
+ Basi cTerm nal | O CRLF

IE
mIlOwite("CQuessed Locale: " + cd.getlLocale() +
Basi cTerni nal | O CRLF) ;
m | O wite(BasicTerm nall O CRLF);
[/ out put negotiated term nal properties
mIOwite("Negotiated Ternm nal Type: " +
cd. get Negoti at edTer m nal Type() + Basi cTerni nal | O CRLF);

Page 9

http://forrest.apache.org/
http://forrest.apache.org/

Shell Tutorial

mIO wite("Negotiated Colums: " + cd.getTerni nal Col ums() +
Basi cTerm nal | O CRLF) ;
mIO wite("Negotiated Rows: " + cd. get Term nal Rows() +

Basi cTerm nal | O. CRLF) ;
/1 add environnent variable to pass between shells
cd. get Envi ronment () . put (" keyl1", "val uel");
cd. get Envi ronment () . put (" key2", "val ue2");
cd. get Envi ronment () . put (" key3", "val ue3");
cd. get Environnent () . put ("key4", "val ue4");

i f (m _Connecti on. set Next Shel | ("si npl e2")) {
m_Connect i on. renoveConnect i onLi st ener (thi s);
MmIOwite("Switching to Sinple2Shell" + BasicTermni nall O CRLF);

} else
mIOwite("Could not set shell to switch to.");

}

m | O flush(); //flush the output to ensure it is sent
}//run
public void connectionTi medQut (Connecti onEvent ce) {

m | O write("CONNECTI ON_TI MEDOUT") ;

m | O flush();

/Tcl ose connection
m_Connecti on. cl ose();
}// connecti onTi medCut

public void connectionldl e(Connecti onEvent ce) {
m | O wite("CONNECTI ON_| DLE");
m | O flush();

}// connectionldle

public void connecti onLogout Request (Connecti onEvent ce) {
m | O wite(" CONNECTI ON_LOGOUTREQUEST") ;
m | O flush();

}// connecti onLogout

public void connectionSent Break(Connecti onEvent ce) {
m |1 O wite(" CONNECTI ON_BREAK") ;
m | O flush();

}// connecti onSent Br eak

public static Shell createShell () {
return new Si npl eShel | ();
}// creat eShel |

}//class SinpleShell

The following code is for the Smple2Shell, to show that switching really works, and that the
environment has not changed during the swtich.

package your. package;

i mport java.util.Hashtabl e;
i mport java.util.Enuneration;

Page 10

http://forrest.apache.org/
http://forrest.apache.org/

Shell Tutorial

i mport net.w npi.tel netd.io.BasicTerm nallQ

i mport net.w npi.tel netd. net. Connection

i mport net.w npi.tel netd. net. Connecti onDat a;

i mport net.w npi.tel netd. event. Connecti onEvent;

public class Sinpl e2Shel
i mpl enents Shell {

prlvate Connecti on m Connecti on;
private BasicTernminal|lO mIQ

public void run(Connection con) {
m Connecti on = con;
m | O = m Connection. get Terni nal | () ;
/lregister the connection |istener
m _Connect i on. addConnecti onLi st ener (t hi s);

mIOwite("Sinple2Shell" + BasicTerm nal | O CRLF);

[/ out put stored environment vari abl es

ConnectionData cd = m Connecti on. get Connecti onDat a() ;

Hasht abl e env = cd. get Envi ronment () ;

for(Enunmeration enum = env. keys(); enum hasMoreEl ements();) {
String key = (String) enum next El enent () ;

mIOwite(key + "=" + env.get(key) + BasicTerm nal |l O CRLF);
}
mI|IO wite("Godbye!" + BasicTerm nall O CRLF);
}//run
public void connectionTi medQut (Connecti onEvent ce) {
m | O write("CONNECTI ON_TI MEDOUT") ;
m | O flush();
/I cl ose connection
m_Connecti on. cl ose();
}// connecti onTi medCut
public void connectionldl e(Connecti onEvent ce) {
n1IC)VW|te("CCNNECTIChLIDLE")'
m | O flush();
}// conne ectionldle
public void connecti onLogout Request (Connecti onEvent ce) {
m | O wite("CONNECTI ON_LOGOUTREQUEST") ;
m | O flush();
}// connecti onLogout
public void connectionSent Break(Connecti onEvent ce) {
m | O write(" CONNECTI ON_BREAK") ;
nLIO flush();
}//conn nect i onSent Br eak

public static Shell createShell () {
return new Si npl e2Shel | ();
}// cr eat eShel

Page 11

http://forrest.apache.org/
http://forrest.apache.org/

Shell Tutorial

}//class Sinpl e2Shel

To run this example you have to modify the above configuration properties to include the
second shell we wrote:

#Unified tel net proxy properties
#Daenon configurati on exanpl e.
#Created: ??/7??/2005 you

HHBHHH B R AT H R B HHH SRR HHH R R R
Tel net daenon properties
HERHHHH T

BHBHBHIHE R R R
Term nals Section
BHBHBHBHEHHRHBHBH AR

List of termnals avail abl e and defi ned bel ow
t ermi nal s=vt 100, ansi , wi ndoof , xt er m

vt 100 i npl enentati on and al i ases
term vt 100. cl ass=net.wi npi .tel netd.io.terninal.vt100
term vt 100. al i ases=def aul t, vt 100- am vt 102, dec- vt 100

ansi inplenentation and aliases . .
termansi.class=net.w npi.tel netd.io.term nal.ansi _
term ansi . al i ases=col or-xterm xterm col or, vt 320, vt 220, | i nux, scr een

wi ndoof inplenmentation and aliases
term wi ndoof . cl ass=net . w npi .tel netd.io.term nal . Wndoof
term wi ndoof . al i ases=

xterminpl enentation and aliases .
term xterm cl ass=net.w npi.telnetd.io.termnal.xterm
termxterm al i ases=

BHBHAHAH R R
Shells Section
BHBHBHBHE R R R R

List of shells avail abl e and defi ned bel ow
shel | s=si npl e, si nmpl e2

shel |l inplenentations
shel I . si npl e. cl ass=your. package. Si npl eShel
shel | . si npl e2. cl ass=your . package. Si npl e2Shel

BHBHBHAHE R R R
Listeners Section
BHBHBHIHE R R R
| i steners=std

Page 12

http://forrest.apache.org/
http://forrest.apache.org/

Shell Tutorial

std |listener specific properties

#Basi ¢ |istener and connecti on managenent settings
st d. port =6666

std. fl oodprotection=5

st d. maxcon=25

Tinmeout Settings for connections (ns)
std.tine_to_warni ng=3600000
std.tine_to_tinedout =60000

Housekeepi ng thread active every 1 secs
st d. housekeepi ngi nt er val =1000

st d. i nput node=char act er

Logi n shel
st d. | ogi nshel | =si npl e

Connection filter class
std. connectionfilter=none

To make the tutorial complete here the command for running the example:
java -classpath telnetd.jar net.w npi.telnetd. Tel netD test. properties
Aswell as an output of the example:

[Fangorn: ~] winpi $ tel net |ocal host 6666
Trying ::1...

Connected to | ocal host.

Escape character is '~]"'.

Then the screen will be erased, and you should end up with the following:

Connected from | ocal host[0:0:0:0:0:0:0: 1: 53635]
Guessed Local e: en

Negot i ated Term nal Type: VT100
Negot i at ed Col umms: 130
Negot i at ed Rows: 24

Switching to Sinple2Shel

Si npl e2Shel

key2=val ue2

keyl=val uel

key4=val ue4d

key3=val ue3

Goodbye!

Connection closed by foreign host.
[Fangorn: ~] wi npi $

Logically the data values from the above output are likely to differ when you are running it (i.e. the address, the guessed locale,
the terminal type etc.)

Page 13

http://forrest.apache.org/
http://forrest.apache.org/

	1 About
	2 Basics
	3 Connection Events
	4 Implementing the Shell Interface
	5 Configuring and Running
	6 Terminal I/O
	6.1 Styled Output

	7 ConnectionData and Shell Switching
	8 The Full Example

