
Shell Tutorial

@version@ (@date@)

by Dieter Wimberger

Table of contents

1 About..2

2 Basics... 2

3 Connection Events... 2

4 Implementing the Shell Interface...3

5 Configuring and Running.. 5

6 Terminal I/O...7

6.1 Styled Output...8

7 ConnectionData and Shell Switching.. 8

8 The Full Example...9

Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

1. About

This document describes how to write a Shell implementation and points out important issues
with the implementation.

2. Basics

To be able to understand this tutorial, you should first try to get comfortable with the
following elements of the API:

net.wimpi.telnetd.shell.Shell
The interface that you will need to implement.
net.wimpi.telnetd.event.ConnectionListener
The Shell interface extends this interface to enforce the handling of connection
events. A separate section of this tutorial will describe event handling in more
detail.
net.wimpi.telnetd.io.BasicTerminalIO
The base class for Terminal I/O. A separate section of this tutorial will describe
more about terminal I/O issues.
net.wimpi.telnetd.net.ConnectionData
A class which gives you access to connection specific references and
information. If your application becomes more sophisticated, you might probably
want to make use of this instance.

Throughout the terminal you will see that there are probably more classes/interfaces and
material that you should become familiar with.

Also make sure that you check out the rest of the deployment and configuration
documentation, to make sure you know how to configure and startup with your shell.

3. Connection Events

As this is a vital point of the shell implementation, we will discuss it first. By implementing
the shell interface you are automatically enforced to implement the ConnectionListener
interface. This is not very difficult, but requires some background to understand the behavior
at runtime.
There are following connection events:

CONNECTION_LOGOUTREQUEST
Occurs when a connection requested disgraceful logout by sending a <Ctrl>-<D>
key combination.
CONNECTION_BREAK

Shell Tutorial

Page 2
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

Occurs when the connection sent a NVT BREAK signal.
CONNECTION_IDLE
Occurs if a connection has been idle exceeding the configured time to warning.
CONNECTION_TIMEDOUT
Occurs if a connection has been idle exceeding the configured time to warning
and the configured time to timedout.

Each event has it's handling method, as defined by the interface, which will be called by the
ConnectionManager of the respective listener. This implies, that the handling routine you
write should return control as fast as possible.

Warning:
You should carefully consider what strategy you use for event handling as the connection thread will be blocked when reading
from the I/O.

A possible strategy would be to flag or queue the event, interrupt the blocked connection
thread in a controlled fashion and make it handle events before reading from the I/O again.
Another possible strategy is a thread pool for handling events.
Logically this depends on your application, as well as the event type.

4. Implementing the Shell Interface

You have to start with defining a class that implements the interface:
public class SimpleShell

implements Shell {

In many cases you will want to have some reference to the I/O and the connection.
private Connection m_Connection;
private BasicTerminalIO m_IO;

An important part of the implementation is a factory method that will allow the shell
manager to create instances of your shell.

Warning:
This method should be a static method of the class and is part of the Shell implementation contract not defined in the interface.
If it is not encountered when loading the shell class, an exception will be thrown.

public static Shell createShell() {
return new SimpleShell();

}//createShell

Note:
If you might want to recycle shell instances, you can do this independent of the ShellManager through this factory method.

Shell Tutorial

Page 3
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

The key method of the shell is the run(Connection con) method which will be called by the
connection to pass control to your application (i.e. shell implementation), once the
connection has been established.
public void run(Connection con) {
m_Connection = con;
m_IO = m_Connection.getTerminalIO();
//register the connection listener
m_Connection.addConnectionListener(this);

//your shell routines

}

We will come back to this method later with some example.

Now what is missing is the ConnectionListener implementation mentioned beforehand. The
following code snippet provides a skeleton dummy implementation:
public void connectionTimedOut(ConnectionEvent ce) {
m_IO.write("CONNECTION_TIMEDOUT");
m_IO.flush();
//close connection
m_Connection.close();

}//connectionTimedOut

public void connectionIdle(ConnectionEvent ce) {
m_IO.write("CONNECTION_IDLE");
m_IO.flush();

}//connectionIdle

public void connectionLogoutRequest(ConnectionEvent ce) {
m_IO.write("CONNECTION_LOGOUTREQUEST");
m_IO.flush();

}//connectionLogout

public void connectionSentBreak(ConnectionEvent ce) {
m_IO.write("CONNECTION_BREAK");
m_IO.flush();

}//connectionSentBreak

So far so good. Now, to have a skeleton that is a simple running example, we will add some
shell output to the run method:
m_IO.eraseScreen(); //erase the screen
m_IO.homeCursor(); //place the cursor in home position
m_IO.write("SimpleShell. Thanks for connecting.\r\n"); //some output
m_IO.flush(); //flush the output to ensure it is sent

Now this is not very exciting, but we have our first example (and Shell skeleton):

package your.package;

public class SimpleShell

Shell Tutorial

Page 4
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

implements Shell {

private Connection m_Connection;
private BasicTerminalIO m_IO;

public void run(Connection con) {
m_Connection = con;
m_IO = m_Connection.getTerminalIO();
//register the connection listener
m_Connection.addConnectionListener(this);

m_IO.eraseScreen(); //erase the screen
m_IO.homeCursor(); //place the cursor in home position
m_IO.write("Dummy Shell. Thanks for connecting.\r\n"); //some output
m_IO.flush(); //flush the output to ensure it is sent

}//run

public void connectionTimedOut(ConnectionEvent ce) {
m_IO.write("CONNECTION_TIMEDOUT");
m_IO.flush();
//close connection
m_Connection.close();

}//connectionTimedOut

public void connectionIdle(ConnectionEvent ce) {
m_IO.write("CONNECTION_IDLE");
m_IO.flush();

}//connectionIdle

public void connectionLogoutRequest(ConnectionEvent ce) {
m_IO.write("CONNECTION_LOGOUTREQUEST");
m_IO.flush();

}//connectionLogout

public void connectionSentBreak(ConnectionEvent ce) {
m_IO.write("CONNECTION_BREAK");
m_IO.flush();

}//connectionSentBreak

public static Shell createShell() {
return new SimpleShell();

}//createShell

}//class SimpleShell

5. Configuring and Running

Now that we have a simple implementation, let's see it in action. The following is a
combined properties file that defines a sample listener which will run the SimpleShell we
have just created.
#Unified telnet proxy properties

Shell Tutorial

Page 5
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

#Daemon configuration example.
#Created: ??/??/2005 you

############################
Telnet daemon properties
############################

#####################
Terminals Section
#####################

List of terminals available and defined below
terminals=vt100,ansi,windoof,xterm

vt100 implementation and aliases
term.vt100.class=net.wimpi.telnetd.io.terminal.vt100
term.vt100.aliases=default,vt100-am,vt102,dec-vt100

ansi implementation and aliases
term.ansi.class=net.wimpi.telnetd.io.terminal.ansi
term.ansi.aliases=color-xterm,xterm-color,vt320,vt220,linux,screen

windoof implementation and aliases
term.windoof.class=net.wimpi.telnetd.io.terminal.Windoof
term.windoof.aliases=

xterm implementation and aliases
term.xterm.class=net.wimpi.telnetd.io.terminal.xterm
term.xterm.aliases=

##################
Shells Section
##################

List of shells available and defined below
shells=simple

shell implementations
shell.simple.class=your.package.SimpleShell

#####################
Listeners Section
#####################
listeners=std

std listener specific properties

#Basic listener and connection management settings
std.port=6666
std.floodprotection=5
std.maxcon=25

Shell Tutorial

Page 6
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

Timeout Settings for connections (ms)
std.time_to_warning=3600000
std.time_to_timedout=60000

Housekeeping thread active every 1 secs
std.housekeepinginterval=1000

std.inputmode=character

Login shell
std.loginshell=simple

Connection filter class
std.connectionfilter=none

Now we assume that we saved the above in a properties file named test.properties. You can
now startup the telnetd as follows (again we assume you have a JRE/JDK installed and the
java VM binary in the PATH):
java -classpath telnetd.jar:commons-logging.jar:log4j.jar
net.wimpi.telnetd.TelnetD -D -Dlog4j.configuration=<your URL for
log4j.properties> <your URL for test.properties>

Using telnet to login, you should see something like the following:
[Fangorn:~] wimpi$ telnet localhost 6666
Trying ::1...
Connected to localhost.
Escape character is '^]'.

Then the screen will be erased, and you should end up with the following:
Simple Shell. Thanks for connecting.
Connection closed by foreign host.
[Fangorn:~] wimpi$

6. Terminal I/O

As mentioned in the overview (../deployment/) there are elements in the library that can help
you with the I/O. The most basic I/O is net.wimpi.telnetd.io.BasicTerminalIO. You can
directly use it to manipulate the terminal screen, you can wrap it into basic InputStream,
Reader, OutputStream or Writer implementations as well as design your own I/O classes on
top that help you most with your application.

Another option provided by the library is the toolkit implementation that has been started in
the net.wimpi.telnetd.io.toolkit package. Work on it is still in progress, and contributions
would be more than welcome. Some documentation/how-to will probably follow somewhen.
What you can do to check out it's functionality (respectively what it does), is to run the
net.wimpi.telnetd.shell.DummyShell implementation (in character mode!) and press t at the
prompt. This will start you into a small demo of the implemented elements.

Shell Tutorial

Page 7
Built with Apache Forrest
http://forrest.apache.org/

../deployment/
http://forrest.apache.org/
http://forrest.apache.org/

Note:
There is a target called runit that should startup a daemon with a listener that has the DummyShell set as it's login shell. In
most cases you can advance between active elements using ENTER, except for the full screen editor, where you will have to
use TAB.

Probably it is possible to adapt some of the code of projects you can find online (like jcurzez,
Java JNI Courses, etc.).

6.1. Styled Output

The implementation has support that helps you with creating styled output (bold, colors etc.).
If the terminal negotiated with a specific connection supports it, style escape codes specific
to the terminal will be sent.

The mechanism is rather simple, adding markups to strings that will be translated into escape
sequences the moment the string is written to the connection. The utility class
net.wimpi.telnetd.io.terminal.ColorHelper contains definitions, as well as helper methods
to add them properly to strings you pass in (see API docs).

7. ConnectionData and Shell Switching

It is possible to obtain some basic information about a connection from the shell
implementation. This is done by obtaining an net.wimpi.telnetd.net.ConnectionData instance
from the acutal connection. The following code snippet is an example:

ConnectionData cd = m_Connection.getConnectionData();
m_IO.write("Connected from: " +

cd.getHostName() + "[" + cd.getHostAddress() + ":"
+ cd.getPort() + "]" + BasicTerminalIO.CRLF);

m_IO.write("Guessed Locale: " +
cd.getLocale() + BasicTerminalIO.CRLF);

m_IO.write(BasicTerminalIO.CRLF);

m_IO.write("Negotiated Terminal Type: " +
cd.getNegotiatedTerminalType() + BasicTerminalIO.CRLF);

m_IO.write("Negotiated Columns: " + cd.getTerminalColumns() +
BasicTerminalIO.CRLF);

m_IO.write("Negotiated Rows: " + cd.getTerminalRows() +
BasicTerminalIO.CRLF);

A shell might switch or allow to switch to another shell (the same environment will be
available to any shell, so you can pass parameters or references between shells without
problem).

Note:

Shell Tutorial

Page 8
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

Don't forget about the connection event listening. In most cases you might want to unregister the actual shell and register the
one you are switching to.

The following code snippet represents a simple example:

if(m_Connection.setNextShell("simple2")) {
m_Connection.removeConnectionListener(this);
m_IO.write("Switching to Simple2Shell" + BasicTerminalIO.CRLF);

} else {
m_IO.write("Could not set shell to switch to.");

}

8. The Full Example

The SimpleShell class with the use of the ConnectionData instance, as well as the
environment. Will switch to Simple2Shell (follows below):

package your.package;

import net.wimpi.telnetd.io.BasicTerminalIO;
import net.wimpi.telnetd.net.Connection;
import net.wimpi.telnetd.net.ConnectionData;
import net.wimpi.telnetd.event.ConnectionEvent;

public class SimpleShell
implements Shell {

private Connection m_Connection;
private BasicTerminalIO m_IO;

public void run(Connection con) {
m_Connection = con;
m_IO = m_Connection.getTerminalIO();
//register the connection listener
m_Connection.addConnectionListener(this);

m_IO.eraseScreen(); //erase the screen
m_IO.homeCursor(); //place the cursor in home position

//output connection data
ConnectionData cd = m_Connection.getConnectionData();
m_IO.write("Connected from: " + cd.getHostName() +

"[" + cd.getHostAddress() + ":" + cd.getPort() + "]"
+ BasicTerminalIO.CRLF

);
m_IO.write("Guessed Locale: " + cd.getLocale() +

BasicTerminalIO.CRLF);
m_IO.write(BasicTerminalIO.CRLF);
//output negotiated terminal properties
m_IO.write("Negotiated Terminal Type: " +

cd.getNegotiatedTerminalType() + BasicTerminalIO.CRLF);

Shell Tutorial

Page 9
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

m_IO.write("Negotiated Columns: " + cd.getTerminalColumns() +
BasicTerminalIO.CRLF);

m_IO.write("Negotiated Rows: " + cd.getTerminalRows() +
BasicTerminalIO.CRLF);

//add environment variable to pass between shells
cd.getEnvironment().put("key1","value1");
cd.getEnvironment().put("key2", "value2");
cd.getEnvironment().put("key3", "value3");
cd.getEnvironment().put("key4", "value4");

if(m_Connection.setNextShell("simple2")) {
m_Connection.removeConnectionListener(this);
m_IO.write("Switching to Simple2Shell" + BasicTerminalIO.CRLF);

} else {
m_IO.write("Could not set shell to switch to.");

}
m_IO.flush(); //flush the output to ensure it is sent

}//run

public void connectionTimedOut(ConnectionEvent ce) {
m_IO.write("CONNECTION_TIMEDOUT");
m_IO.flush();
//close connection
m_Connection.close();

}//connectionTimedOut

public void connectionIdle(ConnectionEvent ce) {
m_IO.write("CONNECTION_IDLE");
m_IO.flush();

}//connectionIdle

public void connectionLogoutRequest(ConnectionEvent ce) {
m_IO.write("CONNECTION_LOGOUTREQUEST");
m_IO.flush();

}//connectionLogout

public void connectionSentBreak(ConnectionEvent ce) {
m_IO.write("CONNECTION_BREAK");
m_IO.flush();

}//connectionSentBreak

public static Shell createShell() {
return new SimpleShell();

}//createShell

}//class SimpleShell

The following code is for the Simple2Shell, to show that switching really works, and that the
environment has not changed during the swtich.

package your.package;

import java.util.Hashtable;
import java.util.Enumeration;

Shell Tutorial

Page 10
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

import net.wimpi.telnetd.io.BasicTerminalIO;
import net.wimpi.telnetd.net.Connection;
import net.wimpi.telnetd.net.ConnectionData;
import net.wimpi.telnetd.event.ConnectionEvent;

public class Simple2Shell
implements Shell {

private Connection m_Connection;
private BasicTerminalIO m_IO;

public void run(Connection con) {
m_Connection = con;
m_IO = m_Connection.getTerminalIO();
//register the connection listener
m_Connection.addConnectionListener(this);

m_IO.write("Simple2Shell" + BasicTerminalIO.CRLF);
//output stored environment variables
ConnectionData cd = m_Connection.getConnectionData();
Hashtable env = cd.getEnvironment();
for(Enumeration enum = env.keys(); enum.hasMoreElements();) {
String key = (String) enum.nextElement();
m_IO.write(key + "=" + env.get(key) + BasicTerminalIO.CRLF);

}
m_IO.write("Goodbye!" + BasicTerminalIO.CRLF);

}//run

public void connectionTimedOut(ConnectionEvent ce) {
m_IO.write("CONNECTION_TIMEDOUT");
m_IO.flush();
//close connection
m_Connection.close();

}//connectionTimedOut

public void connectionIdle(ConnectionEvent ce) {
m_IO.write("CONNECTION_IDLE");
m_IO.flush();

}//connectionIdle

public void connectionLogoutRequest(ConnectionEvent ce) {
m_IO.write("CONNECTION_LOGOUTREQUEST");
m_IO.flush();

}//connectionLogout

public void connectionSentBreak(ConnectionEvent ce) {
m_IO.write("CONNECTION_BREAK");
m_IO.flush();

}//connectionSentBreak

public static Shell createShell() {
return new Simple2Shell();

}//createShell

Shell Tutorial

Page 11
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

}//class Simple2Shell

To run this example you have to modify the above configuration properties to include the
second shell we wrote:
#Unified telnet proxy properties
#Daemon configuration example.
#Created: ??/??/2005 you

############################
Telnet daemon properties
############################

#####################
Terminals Section
#####################

List of terminals available and defined below
terminals=vt100,ansi,windoof,xterm

vt100 implementation and aliases
term.vt100.class=net.wimpi.telnetd.io.terminal.vt100
term.vt100.aliases=default,vt100-am,vt102,dec-vt100

ansi implementation and aliases
term.ansi.class=net.wimpi.telnetd.io.terminal.ansi
term.ansi.aliases=color-xterm,xterm-color,vt320,vt220,linux,screen

windoof implementation and aliases
term.windoof.class=net.wimpi.telnetd.io.terminal.Windoof
term.windoof.aliases=

xterm implementation and aliases
term.xterm.class=net.wimpi.telnetd.io.terminal.xterm
term.xterm.aliases=

##################
Shells Section
##################

List of shells available and defined below
shells=simple,simple2

shell implementations
shell.simple.class=your.package.SimpleShell
shell.simple2.class=your.package.Simple2Shell

#####################
Listeners Section
#####################
listeners=std

Shell Tutorial

Page 12
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

std listener specific properties

#Basic listener and connection management settings
std.port=6666
std.floodprotection=5
std.maxcon=25

Timeout Settings for connections (ms)
std.time_to_warning=3600000
std.time_to_timedout=60000

Housekeeping thread active every 1 secs
std.housekeepinginterval=1000

std.inputmode=character

Login shell
std.loginshell=simple

Connection filter class
std.connectionfilter=none

To make the tutorial complete here the command for running the example:
java -classpath telnetd.jar net.wimpi.telnetd.TelnetD test.properties

As well as an output of the example:
[Fangorn:~] wimpi$ telnet localhost 6666
Trying ::1...
Connected to localhost.
Escape character is '^]'.

Then the screen will be erased, and you should end up with the following:
Connected from: localhost[0:0:0:0:0:0:0:1:53635]
Guessed Locale: en

Negotiated Terminal Type: VT100
Negotiated Columns: 130
Negotiated Rows: 24
Switching to Simple2Shell
Simple2Shell
key2=value2
key1=value1
key4=value4
key3=value3
Goodbye!
Connection closed by foreign host.
[Fangorn:~] wimpi$

Note:
Logically the data values from the above output are likely to differ when you are running it (i.e. the address, the guessed locale,
the terminal type etc.)

Shell Tutorial

Page 13
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

	1 About
	2 Basics
	3 Connection Events
	4 Implementing the Shell Interface
	5 Configuring and Running
	6 Terminal I/O
	6.1 Styled Output

	7 ConnectionData and Shell Switching
	8 The Full Example

